Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38722342

RESUMEN

This study aims to evaluate the antitrypanosomiasis activity of a synthetic dichloro-substituted aminochalcone via in vitro assays against infected cell cultures, as well as a theoretical characterization of pharmacokinetics and pharmacodynamics against the protein targets of the evolutionary cycle of T. cruzi. The in vitro evaluation of parasite proliferation inhibition was performed via cytotoxicity analysis on mammalian host cells, effect on epimastigote and trypomastigote forms, and cell death analysis, while computer simulations characterized the electronic structure of (2E)-1-(4-aminophenyl)-3-(2,4-dichlorophenyl)prop-2-en-1-one (DCl), the mechanism of action against the proteins of the evolutionary cycle of T. cruzi: Cruzain, Trypanothione reductase, TcGAPDH, and CYP51 by molecular docking and dynamics and predictive pharmacokinetics by MPO-based ADMET. The in vitro tests showed that the DCl LC50 in order of 178.9 ± 23.9 was similar to the BZN, evidencing the effectiveness of chalcone against Trypomastigotes. Molecular docking and dynamics simulations suggest that DCl acts on the active site of the CYP51 receptor, with hydrogen interactions that showed a high degree of occupation, establishing a stable complex with the target. MPO analysis and ADMET prediction tests suggest that the compound presents an alignment between permeability and hepatic clearance, although it presents low metabolic stability. Chalcone showed stable pharmacodynamics against the CYP51 target, but can form reactive metabolites from N-conjugation and C = C epoxidation, as an indication of controlled oral dose, although the estimated LD50 rate > 500 mg/kg is a indicative of low incidence of lethality by ingestion, constituting a promising therapeutic strategy.

2.
Chem Biodivers ; : e202400538, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639566

RESUMEN

This is the first study to analyze the anti-inflammatory and antinociceptive effect of withanicandrin, isolated from Datura Ferox leaves, and the possible mechanism of action involved in adult zebrafish (ZFa). To this end, the animals were treated intraperitoneally (i.p.) with withanicandrin (4; 20 and 40 mg/kg; 20 µL) and subjected to locomotor activity and acute toxicity. Nociception tests were also carried out with chemical agents, in addition to tests to evaluate inflammatory processes induced by κ-Carrageenan 1.5% and a Molecular Docking study. As a result, withanicandrin reduced nociceptive behavior by capsaicin at a dose of 40 mg/kg and by acid saline at doses of 4 and 40 mg/kg, through neuromodulation of TRPV1 channels and ASICs, identified through blocking the antinociceptive effect of withanicandrin by the antagonists capsazepine and naloxone. Furthermore, withanicandrin caused an anti-inflammatory effect through the reduction of abdominal edema, absence of leukocyte infiltrate in the liver tissue and reduction of ROS in thel liver tissue and presented better affinity energy compared to control morphine (TRPV1) and ibuprofen (COX-1 and COX-2).

3.
3 Biotech ; 14(5): 135, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38665880

RESUMEN

Extracts from Mangifera indica leaves and its main component, mangiferin, have proven antidiabetic activity. In this study, mangiferin and its natural derivatives Homomangiferin (HMF), Isomangiferin (IMF), Neomangiferin (NMF), Glucomangiferin (GMF), Mangiferin 6'-gallate (MFG), and Norathyriol (NRT) were compared regarding their action on Diabetes mellitus (DM), employing docking and molecular dynamics (MD) simulations to analyze interactions with the aldose reductase enzyme, the precursor to the conversion of glucose into sorbitol. Notably, HMF showed significant affinity to residues in the active site of the enzyme, including Trp 79, His 110, Trp 111, Phe 122, and Phe 300, with an energy of - 7.2 kcal/mol, observed in the molecular docking simulations. MD reinforced the formation of stable complexes for HMF and MFG with the aldose reductase, with interaction potential energies (IPE) in the order of - 300.812 ± 52 kJ/mol and - 304.812 ± 52 kJ/mol, respectively. The drug-likeness assessment, by multiparameter optimization (MPO), highlighted that HMF and IMF have similarities with polyphenols and glycosidic flavonoids recently patented as antidiabetics, revealing that high polarity (TPSA > 180 Å2) is a favorable property for subcutaneous administration, especially because of the gradual passive cell permeability values in biological tissues, with Papp values estimated at < 10 × 10-6 cm/s. These compounds are metabolically stable against metabolic enzymes, resulting in a low toxic incidence by metabolic activation, corroborating with a lethal dose (LD50) greater than 2000 mg/kg. In this way, HMF showed a systematic alignment between predicted pharmacokinetics and pharmacodynamics, characterizing it as the most favorable substance for inhibiting aldose reductase. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03978-9.

4.
Future Med Chem ; 16(1): 11-26, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38084595

RESUMEN

Aim: Our objective was to investigate the trypanocidal effect of the chalcone (2E,4E)-1-(2-hydroxy-3,4,6-trimethoxyphenyl)-5-phenylpenta-2,4-dien-1-one (CPNC). Material & methods: Cytotoxicity toward LLC-MK2 host cells was assessed by MTT assay, and the effect on Trypanosoma cruzi life forms (epimastigotes, trypomastigotes and amastigotes) was evaluated by counting. Flow cytometry analysis was performed to evaluate the possible mechanisms of action. Finally, molecular docking simulations were performed to evaluate interactions between CPNC and T. cruzi enzymes. Results: CPNC showed activity against epimastigote, trypomastigote and amastigote life forms, induced membrane damage, increased cytoplasmic reactive oxygen species and mitochondrial dysfunction on T. cruzi. Regarding molecular docking, CPNC interacted with both trypanothione reductase and TcCr enzymes. Conclusion: CPNC presented a trypanocidal effect, and its effect is related to oxidative stress, mitochondrial impairment and necrosis.


Asunto(s)
Enfermedad de Chagas , Chalconas , Tripanocidas , Trypanosoma cruzi , Humanos , Chalconas/farmacología , Simulación del Acoplamiento Molecular , Enfermedad de Chagas/tratamiento farmacológico , Especies Reactivas de Oxígeno , Tripanocidas/farmacología
5.
J Biomol Struct Dyn ; 42(4): 1670-1691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37222682

RESUMEN

Chalcones have an open chain flavonoid structure that can be obtained from natural sources or by synthesis and are widely distributed in fruits, vegetables, and tea. They have a simple and easy to handle structure due to the α-ß-unsaturated bridge responsible for most biological activities. The facility to synthesize chalcones combined with its efficient in combating serious bacterial infections make these compounds important agents in the fight against microorganisms. In this work, the chalcone (E)-1-(4-aminophenyl)-3-(4-nitrophenyl)prop-2-en-1-one (HDZPNB) was characterized by spectroscopy and electronic methods. In addition, microbiological tests were performed to investigate the modulator potential and efflux pump inhibition on S. aureus multi-resistant strains. The modulating effect of HDZPNB chalcone in association with the antibiotic norfloxacin, on the resistance of the S. aureus 1199 strain, resulted in increase the MIC. In addition, when HDZPNB was associated with ethidium bromide (EB), it caused an increase in the MIC value, thus not inhibiting the efflux pump. For the strain of S. aureus 1199B, carrying the NorA pump, the HDZPNB associated with norfloxacin showed no modulatory, and when the chalcone was used in association with EB, it had no inhibitory effect on the efflux pump. For the tested strain of S. aureus K2068, which carries the MepA pump, it can be observed that the chalcone together the antibiotic resulted in an increase the MIC. On the other hand, when chalcone was used in association with EB, it caused a decrease in bromide MIC, equal to the reduction caused by standard inhibitors. Thus, these results indicate that the HDZPNB could also act as an inhibitor of the S. aureus gene overexpressing pump MepA. The molecular docking reveals that chalcone has a good binding energies -7.9 for HDZPNB/MepA complexes, molecular dynamics simulations showed that Chalcone/MetA complexes showed good stability of the structure in an aqueous solution, and ADMET study showed that the chalcone has a good oral bioavailability, high passive permeability, low risk of efflux, low clearance rate and low toxic risk by ingestion. The microbiological tests show that the chalcone can be used as a possible inhibitor of the Mep A efflux pump.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Chalcona , Chalconas , Nitrofenoles , Antibacterianos/química , Staphylococcus aureus , Norfloxacino/farmacología , Norfloxacino/metabolismo , Simulación del Acoplamiento Molecular , Chalcona/farmacología , Chalconas/farmacología , Pruebas de Sensibilidad Microbiana , Etidio/metabolismo , Proteínas Bacterianas/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos
6.
Artículo en Inglés | MEDLINE | ID: mdl-37957896

RESUMEN

BACKGROUND: Chagas disease kills around 10,000 people yearly, primarily in Latin America, where it is prevalent. Current treatment has limited chronic effectiveness, is unsafe, and has substantial side effects. As a result, the use of oxadiazole derivatives and similar heterocyclic compounds as bioisosteres are well known, and they are prospective candidates in the hunt for novel anti-Trypanosoma cruzi chemicals. Recent research has revealed that the cysteine protease cruzain from T. cruzi is a validated target for disease treatment. OBJECTIVE: Thus, using a molecular dynamics simulation, the current study attempted to determine if a significant interaction occurred between the enzyme cruzain and its ligand. RESULTS: Interactions with the catalytic site and other critical locations were observed. Also, the RMSD values suggested that the molecule under research had stable interactions with its target. CONCLUSION: Finally, the findings indicate that the investigated molecule 2b can interfere enzymatic activity of cruzain, indicating that it might be a promising antichagasic drug.

7.
Arch Biochem Biophys ; 748: 109782, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839789

RESUMEN

The efflux pump mechanism contributes to the antibiotic resistance of widely distributed strains of Staphylococcus aureus. Therefore, in the present work, the ability of the riparins N-(4-methoxyphenethyl)benzamide (I), 2-hydroxy-N-[2-(4-methoxyphenyl)ethyl]benzamide (II), 2, 6-dihydroxy-N-[ 2-(4-methoxyphenyl)ethyl]benzamide (III), and 3,4,5-trimethoxy-N-[2-(4-methoxyphenethyl)benzamide (IV) as potential inhibitors of the MepA efflux pump in S. aureus K2068 (fluoroquinolone-resistant). In addition, we performed checkerboard assays to obtain more information about the activity of riparins as potential inhibitors of MepA efflux and also analyzed the ability of riparins to act on the permeability of the bacterial membrane of S. aureus by the fluorescence method with SYTOX Green. A molecular coupling assay was performed to characterize the interaction between riparins and MepA, and ADMET (absorption, distribution, metabolism, and excretion) properties were analyzed. We observed that I-IV riparins did not show direct antibacterial activity against S. aureus. However, combination assays with substrates of MepA, ciprofloxacin, and ethidium bromide (EtBr) revealed a potentiation of the efficacy of these substrates by reducing the minimum inhibitory concentration (MIC). Furthermore, increased EtBr fluorescence emission was observed for all riparins. The checkerboard assay showed synergism between riparins I, II, and III, ciprofloxacin, and EtBr. Furthermore, riparins III and IV exhibited permeability in the S. aureus membrane at a concentration of 200 µg/mL. Molecular docking showed that riparins I, II, and III bound in a different region from the binding site of chlorpromazine (standard pump inhibitor), indicating a possible synergistic effect with the reference inhibitor. In contrast, riparin IV binds in the same region as the chlorpromazine binding site. From the in silico ADMET prediction based on MPO, it could be concluded that the molecules of riparin I-IV present their physicochemical properties within the ideal pharmacological spectrum allowing their preparation as an oral drug. Furthermore, the prediction of cytotoxicity in liver cell lines showed a low cytotoxic effect for riparins I-IV.


Asunto(s)
Clorpromazina , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Simulación del Acoplamiento Molecular , Clorpromazina/metabolismo , Clorpromazina/farmacología , Antibacterianos/química , Ciprofloxacina/farmacología , Etidio , Benzamidas/farmacología , Benzamidas/química , Benzamidas/metabolismo , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana
8.
3 Biotech ; 13(8): 276, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37457871

RESUMEN

Diabetes is a disease linked to pathologies, such as chronic inflammation, neuropathy, and pain. The synthesis by the Claisen-Schmidt condensation reaction aims to obtain medium to high yield chalconic derivatives. Studies for the synthesis of new chalcone molecules aim at the structural manipulation of aromatic rings, as well as the replacement of rings by heterocycles, and combination through chemical reactions of synthesized structures with other molecules, in order to enhance biological activity. A chalcone was synthesized and evaluated for its antinociceptive, anti-inflammatory and hypoglycemic effect in adult zebrafish. In addition to reducing nociceptive behavior, chalcone (40 mg/kg) reversed post-treatment-induced acute and chronic hyperglycemia and reduced carrageenan-induced abdominal edema in zebrafish. It also showed an inhibitory effect on NO production in J774A.1 cells. When compared with the control groups, the oxidative stress generated after chronic hyperglycemia and after induction of abdominal edema was significantly reduced by chalcone. Molecular docking simulations of chalcone with Cox -1, Cox-2, and TRPA1 channel enzymes were performed and indicated that chalcone has a higher affinity for the COX-1 enzyme and 4 interactions with the TRPA1 channel. Chalcone also showed good pharmacokinetic properties as assessed by ADMET. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03696-8.

9.
Curr Microbiol ; 80(5): 176, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37029832

RESUMEN

Antimicrobial resistance is a natural phenomenon and is becoming a huge global public health problem, since some microorganisms not respond to the treatment of several classes of antibiotics. The objective of the present study was to evaluate the antibacterial, antibiofilm, and synergistic effect of triterpene 3ß,6ß,16ß-trihydroxyilup-20(29)-ene (CLF1) against Staphylococcus aureus and Staphylococcus epidermidis strains. Bacterial susceptibility to CLF1 was evaluated by minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assay. In addition, the effect combined with antibiotics (ampicillin and tetracycline) was verified by the checkerboard method. The biofilms susceptibility was assessed by enumeration of colony-forming units (CFUs) and quantification of total biomass by crystal violet staining. The compound showed bacteriostatic and bactericidal activity against all Staphylococcal strains tested. The synergistic effect with ampicillin was observed only for S. epidermidis strains. Moreover, CLF1 significantly inhibited the biofilm formation and disrupted preformed biofilm of the all strains. Scanning electron microscopy (SEM) images showed changes in the cell morphology and structure of S. aureus ATCC 700698 biofilms (a methicillin-resistant S. aureus strain). Molecular docking simulations showed that CLF1 has a more favorable interaction energy than the antibiotic ampicillin on penicillin-binding protein (PBP) 2a of MRSA, coupled in different regions of the protein. Based on the results obtained, CLF1 proved to be a promising antimicrobial compound against Staphylococcus biofilms.


Asunto(s)
Combretum , Staphylococcus aureus Resistente a Meticilina , Triterpenos , Staphylococcus aureus , Combretum/química , Staphylococcus , Triterpenos/farmacología , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Ampicilina/farmacología , Biopelículas , Staphylococcus epidermidis , Pruebas de Sensibilidad Microbiana
10.
Planta Med ; 89(10): 979-989, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36940928

RESUMEN

Rauvolfia species are well known as producers of bioactive monoterpene indole alkaloids, which exhibit a broad spectrum of biological activities. A new vobasine-sarpagan-type bisindole alkaloid (1: ) along with six known monomeric indoles (2, 3/4, 5: , and 6/7: ) were isolated from the ethanol extract of the roots of Rauvolfia ligustrina. The structure of the new compound was elucidated by interpretation of their spectroscopic data (1D and 2D NMR and HRESIMS) and comparison with published data for analog compounds. The cytotoxicity of the isolated compounds was screened in a zebrafish (Danio rerio) model. The possible GABAergic (diazepam as the positive control) and serotoninergic (fluoxetine as the positive control) mechanisms of action in adult zebrafish were also evaluated. No compounds were cytotoxic. Compound 2: and the epimers 3: /4: and 6: /7: showed a mechanism action by GABAA, while compound 1: showed a mechanism action by a serotonin receptor (anxiolytic activity). Molecular docking studies showed that compounds 2: and 5: have a greater affinity by the GABAA receptor when compared with diazepam, whereas 1: showed the best affinity for the 5HT2AR channel when compared to risperidone.


Asunto(s)
Alcaloides , Ansiolíticos , Antineoplásicos , Rauwolfia , Animales , Rauwolfia/química , Ansiolíticos/farmacología , Pez Cebra , Simulación del Acoplamiento Molecular , Alcaloides Indólicos/química , Diazepam/farmacología , Receptores de GABA-A , Estructura Molecular
11.
J Biomol Struct Dyn ; 41(21): 12426-12444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36644862

RESUMEN

The prevalence of anxiety is a significant public health problem, being the 24th leading cause of disability in individuals affected by this disorder. In this context, chalcones, a flavonoid subclass obtained from natural or synthetic sources, interact with central nervous system (CNS) receptors at the same binding site as benzodiazepines, the primary drugs used in the treatment of anxiety. Thus, our study investigates the anxiolytic effect of synthetic chalcones derived from the natural product 2-hydroxy-3,4,6-trimethoxyacetophenone isolated from Croton anisodontus Müll.Arg. in modulating anxiolytic activity via GABAergic and serotoninergic neurotransmission in an adult zebrafish model. Chalcones 1 and 2 were non-toxic to adult zebrafish and showed anxiolytic activity via GABAA receptors. Chalcone 2 also had its anxiolytic action reversed by the antagonist granisetron, indicating the participation of serotonergic receptors 5HTR3A/3B in the anxiolytic effect. In addition, molecular docking results showed that chalcones have a higher affinity for the GABAA receptor than DZP and binding in the same region of the DZP binding site, indicating a similar effect to the drug. Furthermore, the interaction of chalcones with GABAA and 5-HT3A receptors demonstrates the anxiolytic effect potential of these molecules.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Ansiolíticos , Chalconas , Animales , Adulto , Humanos , Ansiolíticos/farmacología , Ansiolíticos/química , Ansiolíticos/uso terapéutico , Pez Cebra/metabolismo , Chalconas/farmacología , Chalconas/química , Simulación del Acoplamiento Molecular , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico
12.
J Biomol Struct Dyn ; 41(21): 12055-12062, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36695084

RESUMEN

Anxiety and epilepsy affect millions of people worldwide, and the treatment of these pathologies involves the use of Benzodiazepines, drugs that have serious adverse effects such as dependence and sedation, so the discovery of new anxiolytic and antiepileptic drugs are necessary. Many routes for synthesizing ibuprofen derivatives have been developed, and these derivatives have shown promising pharmacological effects. Therefore, this study aims to evaluate its anxiolytic and anticonvulsant effect against the adult Zebrafish animal model of Ibuprofen (IBUACT) and its interaction with the GABAergic receptor through in silico studies. The light/dark preference test (Scototaxis test) was used to evaluate the anxiolytic behavior of adult Zebrafish acutely treated with IBUACT and Diazepam, and their anticonvulsant effects were investigated through the pentylenetetrazol (PTZ)-induced seizure model. Animals treated with IBUACT showed anxiolytic behavior similar to Diazepam, and pretreatment with flumazenil reversed this behavior. PTZ-induced seizures were delayed by IBUACT in all three stages and were shown to bind strongly in the Diazepam region of GABAA. In addition, this work presents evidence of new pharmacological applications of ibuprofen derivative in pathologies of the central nervous system (CNS), opening the horizon for new studies.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Ansiolíticos , Humanos , Animales , Ansiolíticos/efectos adversos , Anticonvulsivantes/farmacología , Pez Cebra , Ibuprofeno/farmacología , Diazepam/efectos adversos , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico
13.
J Biomol Struct Dyn ; 41(13): 6326-6344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35943030

RESUMEN

Coronavirus disease (COVID-19) has the virus that causes the SARS-CoV-2 severe acute respiratory syndrome, which has reached a pandemic proportion, with thousands of deaths worldwide already registered. It has no standardized effective clinical treatment, arousing the urgent need for the discovery of bioactive compounds for the treatment of symptoms of COVID-19. In this context, the present study aimed to evaluate the influence of seasonality on the yield and chemical composition of the essential oils of Piper cernuum and Piper rivinoides as well as to evaluate the anti-SARS-CoV-2 potential of the major components of each oil by molecular docking and quantum chemical calculation (Density Functional Theory method), being possible indicate that the winter and autumn periods, the seasons of the year where it is possible to obtain the highest percentage of Piper cernuum and Piper rivinoides oils, respectively. Regarding the anti-SARS-Cov-2 potential, the present work showed that the dihydroagarofuran present in Piper cernuum, presented a strong interaction with amino acid residues from Mpro, presenting a potential similar to Remdesivir, a drug for clinical use. Regarding methyltransferase, dihydroagarofuran (Piper cernuum) and myristicin (Piper rivinoids) showed better affinity, with important interactions at the active site of the inhibitor Sinefugin, suggesting a potential inhibitory effect of the heterodimer methyltransferase complex NSP16-NSP10 SARS Cov-2. Molecular docking and molecular dynamics studies represent an initial step, being indicative for future in vitro studies of dihydroagarofuran and myristicin, as possible pharmacological tools for COVID-19.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Aceites Volátiles , Piper , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2/metabolismo , Metiltransferasas/química , Estaciones del Año , Teoría Funcional de la Densidad , Aceites Volátiles/farmacología , Aceites Volátiles/química , Piper/química , Simulación de Dinámica Molecular , Inhibidores de Proteasas
14.
J Biomol Struct Dyn ; 41(13): 6434-6441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35894999

RESUMEN

Leishmaniasis disease is a serious public health problem. This disease reaches about 10 to 12 million people, and 20-30 thousand people die yearly. The disease treatment is realized through pentavalent antimonial and glucantime. However, some studies indicated that these drugs presented high toxicity and cost. Therefore, it is urgent the search for new drugs that may combat this disease and are less toxic. This work analyzed for the first time the interaction potential of (E)-1-(4-aminophenyl)-3-phenylprop-2-en-1-one (C1), (E)-1-(4-aminophenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one (C4), (E)-1-(4-aminophenyl)-3-(4ethoxyphenyl)-prop-2-en-1-one (C9) chalcones through in silico approach. The molecular docking and the molecular electrostatic potential results indicated that the chalcones analyzed presented a strong interaction with the Leishmania major receptor, with affinity energy similar to the ligand co-crystallized. Besides, the interaction potential energy analysis from molecular dynamics simulations indicated the C9 ligand interacted more strongly than the 4-bromo-2,6-dichloro-N-(1,3,5-trimethyl-1H-pyrazolyl) benzenesulfonamide ligand with the Leishmania major receptor, especially for the Phe 88, Tyr 217 and His 219 residues. Therefore, the C9 chalcone might potentially treat Leishmaniasis disease.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Chalconas , Leishmania , Leishmaniasis , Humanos , Antiparasitarios/uso terapéutico , Chalconas/farmacología , Chalconas/química , Simulación del Acoplamiento Molecular , Ligandos , Leishmaniasis/tratamiento farmacológico
15.
J Biomol Struct Dyn ; 41(4): 1206-1216, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34907850

RESUMEN

Ouratea fieldingiana, popularly known as batiputá, is a tree species easily found in the coastal part of northeastern Brazil. Its leaves are rich in biflavonoids, its major compound being amentoflavone. Biflavonoids are well studied due to their high antioxidant capacity. Alzheimer's disease (AD) is a disease characterized by the progressive loss of neurons. Currently, the pharmacological treatment of AD has four drugs: donepezil, galantamine, rivastigmine and memantine. Where these drugs, with the exception of memantine, are inhibitors of acetylcholinesterase, thus inhibiting the enzyme that destroys acetylcholine, thus increasing the availability of this neurotransmitter. This article aims to determine in vitro and in silico the antioxidant and anticholinesterase action of amentoflavone isolated from the leaves of Ouratea fieldingiana. The antioxidant capacity of amentoflavone was evaluated using the DPPH* free radical scavenging method, with an IC50 of 5.73 ± 0.08 µg/mL. The antiradical properties of the molecule were also studied in silico through several HAT, SET-PT and SPLET mechanisms via DFT M06-2X/6-311++G(d,p). It was found that in the hydrogen atom transfer mechanism (HAT) the best trend was obtained as an anti-radical mechanism. Amentoflavone has the ability to inhibit acetylcholinesterase when tested in vitro, having an IC50 of 8.68 ± 0.73 µg/mL, corroborating its effect in the in silico test, presenting four strong covalent hydrogen bonds for having a bond length up to 2.5 Å. Thus, amentoflavone is an important target for further testing against Alzheimer's disease. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enfermedad de Alzheimer , Biflavonoides , Ochnaceae , Inhibidores de la Colinesterasa/farmacología , Antioxidantes/química , Biflavonoides/farmacología , Biflavonoides/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Acetilcolinesterasa , Memantina/uso terapéutico
16.
J Biomol Struct Dyn ; 41(6): 2274-2288, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35067180

RESUMEN

Diabetes mellitus is a chronic metabolic disorder that has been increasing drastically around the worldwide. It is important to emphasize that although many drugs are commercially available to treat diabetes, many of them have shown a number of adverse effects. Therefore, search for new antidiabetic agents is of great interest, and natural products, especially those obtained from plants sources, may be an alternative to available drugs. This study reports the in vivo and in silico evaluation of the hypoglycemic activity of fisetinidol. The conformational analysis confirmed that the fisetinidol compound possesses two valleys in the potential energy curve, showing a stable conformer on the global minimum of the PES defined by the dihedral angle θ (C6-C7-O-H) at 179.9°, whose energy is equal to zero. In addition, fisetinidol has shown promise in glycemic control and oxidative stress caused by hyperglycemia induced by high sucrose concentration, causing hypoglycemic and hepatoprotective effects in adult zebrafish. ADMET studies showed that fisetinidol has high passive permeability, low clearance and low toxic risk by ingestion, and computational studies demonstrated that fisetinidol complexes in the same region as metformin and α-acarbose, which constitutes a strong indication that fisetinidol has the same inhibitory mechanisms of α-acarbose and metformin.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Bauhinia , Diabetes Mellitus , Metformina , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Pez Cebra , Acarbosa , Metformina/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico
17.
Neurochem Res ; 48(1): 250-262, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36066698

RESUMEN

Parkinson's disease (PD) is characterized by dopaminergic cell loss in the substantia nigra, and PD brains show neuroinflammation, oxidative stress, and mitochondrial dysfunction. The study evaluated the neuroprotective activity of 1α,25-dihydroxy vitamin D3 (VD3), on the rotenone (ROT)-induced cytotoxicity in PC12 cells. The viability parameters were assessed by the MTT and flow cytometry, on cells treated or not with VD3 and/or ROT. Besides, ROS production, cell death, mitochondrial transmembrane potential, reduced GSH, superoxide accumulation, molecular docking (TH and Keap1-Nrf2), and TH, Nrf2, NF-kB, and VD3 receptor protein contents by western blot were evaluated. VD3 was shown to improve the viability of ROT-exposed cells. Cells exposed to ROT showed increased production of ROS and superoxide, which decreased after VD3. ROT decrease in the mitochondrial transmembrane potential was prevented, after VD3 treatment and, VD3 was shown to interact with tyrosine hydroxylase (TH) and Nrf2. While ROT decreased TH, Nrf2, and NF-kB expressions, these effects were reversed by VD3. In addition, VD3 also increased VD3 receptor protein contents and values went back to those of controls after ROT exposure. VD3 protects PC12 cells against ROT damage, by decreasing oxidative stress and improving mitochondrial function. One target seems to be the TH molecule and possibly an indirect Nrf2 activation could also justify its neuroprotective actions on this PC12 cell model of PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Rotenona/toxicidad , Células PC12 , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Especies Reactivas de Oxígeno/metabolismo , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Superóxidos/metabolismo , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo
18.
J Biomol Struct Dyn ; 41(15): 7463-7479, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36120936

RESUMEN

Characterized as a neglected disease, Chagas disease is an infection that, in the current scenario, affects about 8 million people per year, with a higher incidence in underdeveloped countries, Chagas is responsible for physiological disabilities that result in impacts that are slightly reflected in world socioeconomic stability. Although treatments are based on drugs such as Benznidazole, the pathology lacks a continuous treatment method with low toxicological incidence. The present study estimates the anti-chagasic activity of the synthetic chalcone CPN2F based on the alignment between in vitro tests and structural classification in silico studies, molecular docking and ADMET studies. The in vitro tests showed a reduction in the protozoan metabolism in host cells (LLC-MK2). At the same time, the molecular docking models evaluate this growth inhibition through the synergistic effect associated with Benznida- zole against validated therapeutic target key stages (Cruzaine TcGAPDH and Trypanothione reductase) of the Trypanosoma cruzi development cycle. The in silico prediction results reveal an alignment between pharmacokinetic attributes, such as renal absorption and release, which allow the preparation of CPN2F as an antichagasic drug with a low incidence of organic toxicity.Communicated by Ramaswamy H. Sarma.

19.
Eur J Med Chem ; 241: 114624, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-35933786

RESUMEN

Chagas disease is caused by the parasite Trypanosoma cruzi and affects millions of people worldwide, having no effective cure. The main sanitary emergency is related to patients with chronic infection, which accumulate comorbidities causing patient death. However, actual chemotherapeutic treatments do not effectively address the chronic forms of the disease. Invertebrates are a relevant source of antimicrobial peptides (AMPs) as part of the innate immune system for their protection. The AMP M-PONTX-Dq3a, isolated from the Dinoponera quadriceps ant venom, has shown very effective antimicrobial and trypanocidal activities. Although M-PONTX-Dq3a has better activity that the current therapies, the peptide length has limited its possibilities to reach clinical application. In this investigation, we aimed to dissect the trypanocidal effect of M-PONTX-Dq3a fragments and to study the activity of substituted analogs, to improve not only peptide trypanocidal activity and bioavailability, but also production costs. Our studies have led to the identification of two smaller peptides, M-PONTX-Dq3a [1-15] and [Lys]3-M-PONTX-Dq3a [3-153-15 with similar trypanocidal activities that the parent peptide has against the three forms of T. cruzi benznidazole-resistant Y strain. Both peptides represent promising candidates to develop novel and effective trypanocidal bio-therapeutic agents, opening new avenues for the treatment of chronic patients.


Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Enfermedad de Chagas/tratamiento farmacológico , Humanos , Péptidos/farmacología , Péptidos/uso terapéutico , Tripanocidas/uso terapéutico , Ponzoñas
20.
Chem Biol Interact ; 361: 109920, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35461787

RESUMEN

Chagas disease is a disease that is emerging in North America and Europe countries. Benznidazole is the main drug available, but it has high toxicity and low efficacy in the chronic phase. In this way, researching new antichagasic agents is necessary. Thus, the aim of this study is to evaluate the effect of novel chalcones and the influence of chlorine substitutions on Trypanosoma cruzi and host cells. Unsubstituted (1), 4-chlorine substituted (2) and 2,4-chlorine substituted (3) chalcones were synthesized by Claisen-Schmidt condensation, characterized, and electrical distribution was assessed by Density Fuctional Theory (DFT). The host cells toxicity (LLC-MK2) was performed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) reduction assay. The effect on epimastigote (24, 48 and 72h), trypomastigote (24h) and amastigotes (24 h) was evaluated. Flow cytometry assays were performed with 7-Aminoactinomycin D (7-AAD) and Annexin-PE, Dichlorofluorescein diaceteate (DCFH-DA) and Rhodamine123 (Rho123). Finally, molecular docking predicted interactions between chalcones and cruzain (TcCr) and trypanothione reductase (TcTR). The toxicity on host cells was reduced almost twenty times on chlorine substituted molecules. On epimastigote and trypomastigote forms, all substances presented similar effects. After treatment with molecule 3, it was observed a decrease in infected cells and intracellular amastigotes. Their effect is related to necrotic events, increase of cytoplasmic Reactive Oxygen Species (ROS) and mitochondrial dysfunction. Also, this effect might be associated with involvement of TcCr and TcTR enzymes. Therefore, the results showed that chlorine substitution on chalcones reduces the host cell's toxicity without compromising the effect on Trypanosoma cruzi Y strain forms, and it occurs over membrane damage, oxidative stress and possible interactions with TcCr and TcTR.


Asunto(s)
Enfermedad de Chagas , Chalcona , Chalconas , Tripanocidas , Trypanosoma cruzi , Enfermedad de Chagas/tratamiento farmacológico , Chalcona/farmacología , Chalconas/farmacología , Chalconas/uso terapéutico , Cloruros/farmacología , Cloro , Humanos , Simulación del Acoplamiento Molecular , Tripanocidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...